Complex Analysis: Resit Exam

Aletta Jacobshal 01, Friday 13 April 2018, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of each answer sheet and on the envelope.
- Use the ruled paper for writing the answers and use the blank paper as scratch paper. After finishing put your answers in the envelope. Do NOT seal the envelope! You must return the scratch paper and the printed exam (separately from the envelope).
- Solutions should be complete and clearly present your reasoning. When you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10.
- You are allowed to have a 2 -sided A4-sized paper with handwritten notes.

Question 1 (18 points)

(a) (3 points) Solve $z^{3}+i=0$ (you may express the solutions in Cartesian, trigonometric, or exponential form). Draw the solutions on the complex plane.
(b) (15 points) Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{x}{x^{3}+i} \mathrm{~d} x
$$

using the calculus of residues. NB: This subquestion uses the result from subquestion (a) and will be graded only if subquestion (a) has been correctly answered and the result from subquestion (a) is properly used.

Question 2 (15 points)

Apply Rouché's theorem with the type of contour C_{R} shown below to prove that the equation $z=2-e^{-z}$ has exactly one solution in the right half plane (that is, for $\left.\operatorname{Re}(z) \geq 0\right)$. Why must this solution be real?

Question 3 (15 points)

Represent the function

$$
f(z)=\frac{z^{2}}{z-2}
$$

(a) (8 points) as a Taylor series around 0 and give its radius of convergence;
(b) (7 points) as a Laurent series in the domain $|z|>2$.

Question 4 (15 points)

Consider the function

$$
f(z)=x+a x^{2}-y^{2}+i y+i b x y
$$

where $a, b \in \mathbb{R}$.
(a) (9 points) Find the values of a and b for which $f(z)$ is entire.
(b) (6 points) Let's call a_{0} and b_{0} respectively the (correct) values of a and b from subquestion (a). If $b=b_{0}$ but $a \neq a_{0}$ determine the subset of \mathbb{C} where $f(z)$ is differentiable and the subset where it is analytic.

Question 5 (12 points)

Consider the function

$$
f(z)=\frac{\cos (z)+1}{(z-\pi)^{2}}
$$

(a) (9 points) Compute the Laurent series of $f(z)$ for $|z-\pi|>0$.
(b) (3 points) Determine the singularities of $f(z)$ and their type (removable, pole, essential; if pole, specify the order).

Question 6 (15 points)

(a) (6 points) Find the most general harmonic polynomial $a x^{2}+2 b x y+c y^{2}$, that is, determine the relations between the (real) constants a, b, c, so that the given polynomial is a harmonic function.
(b) (9 points) Determine the harmonic conjugate of the polynomial $a x^{2}+2 b x y+c y^{2}$ for the a, b, c determined in subquestion (a). NB: Finding a harmonic conjugate will only work if the correct relations between a, b, c have been determined. If finding the harmonic conjugate does not work you should check the correctness of your result in subquestion (a).

